8,313 research outputs found

    Control device Patent

    Get PDF
    Device for controlling rotary potentiometer mounted on aircraft steering wheel or aileron contro

    Thumb-actuated control device

    Get PDF
    Rotary potentiometer device on the spoke of an aircraft steering wheel provides servo control of certain flight characteristics with no visual attention and a minimum of operational movement

    Variational calculations for K-few-nucleon systems

    Full text link
    Deeply bound KNN, KNNN and KNNNN states are discussed. The effective force exerted by the K meson on the nucleons is calculated with static nucleons. Next the binding energies are obtained by solving the Schrodinger equation or by variational calculations. The dominant attraction comes from the S-wave Lambda(1405) and an additional contribution is due to Sigma(1385). The latter state is formed at the nuclear peripheries and absorbs a sizable piece of the binding energy. It also generates new branches of quasi-bound states. The lowest binding energies based on a phenomenological KN input fall into the 40-80 MeV range for KNN, 90-150 MeV for KNNN and 120-220 MeV for K-alpha systems. The uncertainties are due to unknown KN interactions in the distant subthreshold energy region.Comment: 19 pages, 1 figur

    First Nonperturbative Test of a Relativistic Heavy Quark Action in Quenched Lattice QCD

    Get PDF
    We perform a numerical test of a relativistic heavy quark(RHQ) action, recently proposed by Tsukuba group, in quenched lattice QCD at a0.1a\simeq 0.1 fm. With the use of the improvement parameters previously determined at one-loop level for the RHQ action, we investigate a restoration of rotational symmetry for heavy-heavy and heavy-light meson systems around the charm quark mass. We focused on two quantities, the meson dispersion relation and the pseudo-scalar meson decay constants. It is shown that the RHQ action significantly reduces the discretization errors due to the charm quark mass. We also calculate the S-state hyperfine splittings for the charmonium and charmed-strange mesons and the DsD_s meson decay constant. The remaining discretization errors in the physical quantities are discussed.Comment: 21 pages, 16 figures. A reference and a comment added, a major modification in appendix, several minor changes in the abstract and the main text. Errors in affiliation are corrected. Version appeared in JHE

    Pole dynamics for the Flierl-Petviashvili equation and zonal flow

    Full text link
    We use a systematic method which allows us to identify a class of exact solutions of the Flierl-Petvishvili equation. The solutions are periodic and have one dimensional geometry. We examine the physical properties and find that these structures can have a significant effect on the zonal flow generation.Comment: Latex 40 pages, seven figures eps included. Effect of variation of g_3 is studied. New references adde

    Spin foam model for Lorentzian General Relativity

    Get PDF
    We present a spin foam formulation of Lorentzian quantum General Relativity. The theory is based on a simple generalization of an Euclidean model defined in terms of a field theory over a group. Its vertex amplitude turns out to be the one recently introduced by Barrett and Crane. As in the case of its Euclidean relatives, the model fully implements the desired sum over 2-complexes which encodes the local degrees of freedom of the theory.Comment: 8 pages, 1 figur

    Resolving Exceptional Configurations

    Full text link
    In lattice QCD with Wilson fermions, exceptional configurations arise in the quenched approximation at small quark mass. The origin of these large previously uncontrolled lattice artifacts is identified. A simple well-defined procedure (MQA) is presented which removes the artifacts while preserving the correct continuum limit.Comment: Talk presented by E. Eichten at Lattice 97, Edinburgh(UK), July97. 6 pages, LaTeX, 1 table, 5 figure

    Space Shuttle program communication and tracking systems interface analysis

    Get PDF
    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis
    corecore